Приглашаем посетить сайт

Тургенев (turgenev-lit.ru)

Физическая энциклопедия. В 5-ти томах
ПОЛЯ ФИЗИЧЕСКИЕ

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ПОЛЯ ФИЗИЧЕСКИЕ

ПОЛЯ ФИЗИЧЕСКИЕ - физ. системы, обладающие бесконечно большим числом степеней свободы. Относящиеся к такой системе физ. величины не локализованы на к.-л. отдельных материальных частицах с конечным числом степеней свободы, а непрерывно распределены по нек-рой области пространства. Примерами таких систем могут служить гравитац. и эл.-магн. поля и волновые поля частиц в квантовой физике (электрон-но-позитронное, мезонное и т. п.). Для описания П. ф. в каждый момент времени необходимо задать одну или неск. физ. величин в каждой точке области, где имеется поле, т. е. задать полевую ф-цию. Пока речь идёт о нерелятивистских процессах, понятие поля можно не вводить. Напр., при рассмотрении гравитац. или куло-новского взаимодействия двух частиц можно считать, что сила взаимодействия возникает лишь при наличии обеих частиц, полагая, что пространство вокруг частиц не играет особой роли в передаче взаимодействия. Такое представление соответствует концепции дальнодействия, или действия на расстоянии. Понятие о дальнодействии, однако, является приближением, только в нерелятивистском случае физически эквивалентным представлению о том, что действие заряда проявляется лишь при помещении 2-й, пробной, частицы в область пространства, свойства к-рого уже изменены из-за наличия 1-й частицы. Взаимодействие при этом передаётся постепенно, от точки к точке, в таком изменённом пространстве. Это и означает, что 1-я частица создаёт вокруг себя силовое гравитац. или электрич. поле. Эта концепция близкодействия находит подтверждение при рассмотрении релятивистских процессов. В этом случае, т. е. при движении источников со скоростью, сравнимой со скоростью передачи взаимодействия, говорить о дальнодействии уже нельзя. Именно, изменение состояния одной частицы сопровождается, вообще говоря, изменением её энергии и импульса, а изменение силы, действующей на др. частицу, наступает лишь через конечный промежуток времени. Доли энергии и импульса, отданные одной частицей и ещё не принятые 2-й, принадлежат в течение этого времени переносящему их полю. Поле, переносящее взаимодействие, является, т. о., само по себе физ. реальностью.

Понятие поля применимо при описании свойств всякой сплошной среды. Если сопоставить с каждой точкой среды определяющие её состояние физ. величины (темп-ру, давление, натяжения и т. п.), то получится поле этих величин. В этом случае роль упругой среды для передачи взаимодействия очевидна. Первонач. трудность представить себе немеханич. среду, способную переносить энергию и импульс, породила разл. механич. модели эфира как среды, переносящей эл.-магн. взаимодействия. Однако все механич. модели эфира противоречат принципу относительности Эйнштейна (см. Относительности теория), и от них пришлось отказаться.

Простейший тип движения поля - волновое, для к-рого полевая ф-ция периодически меняется во времени и от точки к точке. Вообще, любое состояние поля удобно представить в виде суперпозиции волн. Для волнового движения характерны явления дифракции и интерференции, невозможные в классич. механике частиц. С др. стороны, динамич. характеристики (энергия, импульс и т. д.) волн "размазаны" в пространстве, а не локализованы, как у классич. частиц.

Такое противопоставление волновых и корпускулярных свойств, присущее классич. механике, отражается в ней как качеств. различие между П. ф. и частицами. Однако опыт показывает, что на малых расстояниях, в атомных масштабах, это различие исчезает: у ноля выявляются корпускулярные свойства (см., напр., Комптона эффект), у частиц - волновые (см. Дифракция частиц).

Квантовая механика ставит в соответствие каждой частице поле её волновой ф-ции, дающее распределение различных, относящихся к частице физ. величии. Концепция поля является основной для описания свойств элементарных частиц и их взаимодействий. Конечная цель в этом случае - нахождение свойств частиц из ур-ний поля и перестановочных соотношений, определяющих квантовые свойства материн. Возможный вид ур-ний поля ограничен принципами симметрии и инвариантности, являющимися обобщением эксперим. данных. Лоренц-ковариантность, напр., требует, чтобы волновые ф-ции частиц преобразовались по неприводимым представлениям группы Лоренца. Таких представлений бесконечно много, однако только часть из них реализована в природе и соответствует тем или иным элементарным частицам. Реально используются наиб. простые ур-ния полей, являющиеся локальными и перенормируемыми. Попытки построения теорий, не удовлетворяющих этим требованиям,- нелинейной, нелокальной и т. п. теорий поля - влекут за собой пересмотр ряда важнейших принципов, существенных при физ. интерпретации теории (принцип суперпозиции, положительность нормы волновой ф-ции и т. д.).

Лит.: Ландау Л. Д., Лифшиц E. М., Теория поля, 7 изд., М., 1988; Боголюбов Н. Н., Ширков Д. В., Введение в теорию квантовых полей, 4 изд., М., 1984; Медведев Б. В., Начала теоретической физики, М., 1977; Боголюбов Н. Н., Ширков Д. В., Квантовые поля, М., 1980.

В. П. Павлов.

В начало энциклопедии