Приглашаем посетить сайт

Русский язык (rus-yaz.niv.ru)

Физическая энциклопедия. В 5-ти томах
ИОННЫЙ ПУЧОК

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ИОННЫЙ ПУЧОК

ИОННЫЙ ПУЧОК - направленный поток положит. (одно- или многозарядных) или отрицат. ионов, имеющий обычно малые поперечные размеры по сравнению с длиной и движущийся со скоростью, значительно превышающей хаотич. тепловые скорости составляющих его частиц. Впервые И. п. наблюдал Э. Гольдштейн (Е. Goldstein) в 1886; в катоде газоразрядной трубки были проделаны отверстия, через к-рыепроходили ионы, ускоренные в межэлектродном промежутке, и создавали за катодом слабое свечение (т. н. каналовые лучи). В настоящее время И. п. получают с помощью различных ионных источников и формируют системами электрической и магнитной фокусировки. И. п. могут иметь вид цилиндра, конуса, ленты и т. п. Поведение И. п. зависит от нач. направленной скорости ионов, их тепловых скоростей, внеш. электрич. и магн. полей, парных столкновений ионов с частицами среды, а также от собственного объёмного заряда пучка и магн. поля его тока. Важным параметром И. п., характеризующим влияние объёмного заряда на его свойства, является первеанс P=I/U3/2, где I - ток пучка, a U- ускоряющая ионы разность потенциалов. Пучки с пост, первеансом при одинаковых размерах подобны друг другу. Хотя разброс тепловых (хаотич.) скоростей ионов может быть мал по сравнению с их направленной скоростью, часто именно тепловые скорости ограничивают возможную фокусировку И. п., искажая его форму. Это качество пучка характеризуется т. н. эмиттансом, связанным с проекцией фазового объёма пучка на плоскость, к-рый приближённо вычисляют по ф-ле: V ф=2R0(2Ti/Mc2)l/2, где R0 - радиус плазмы, служащей источником ионов с темп-рой Т i,выраженной в единицах энергии, М - масса иона. В отсутствие частиц противоположного знака осесимметричный И. п. расширяется вдоль оси z под действием собственного заряда и профиль И. п. описывается ф-лой:

Физическая энциклопедия. В 5-ти томах ИОННЫЙ ПУЧОК

где f(x) - известная табулированная ф-ция:

Физическая энциклопедия. В 5-ти томах ИОННЫЙ ПУЧОК

Для сохранения формы И. п. их объёмный заряд должен быть скомпенсирован зарядом частиц противоположного знака. Наиб, распространена "газовая" компенсация объёмного заряда в И. п. При столкновении нек-рых положит, ионов пучка с атомами остаточного газа образуются электроны и относительно медленные положит, ионы. Последние выталкиваются из пучка электрич. полем, а электроны накапливаются в нём, несмотря на то, что этому препятствуют кулоновские столкновения их с первичными ионами. Так достигается не полная, но значит, компенсация объёмного заряда в пучке положит, ионов (рис. 1, а). Иначе происходит газовая

Физическая энциклопедия. В 5-ти томах ИОННЫЙ ПУЧОК

Рис. 1. Радиальное распределение потенциала: а - в пучке положительных ионов до компенсации (Dj0) и после неё (Dj к); б - в пучке отрицательных ионов при различных давлениях газа: 1 - в высоком вакууме; 2 - при большом давлении, когда пучок в значительной мере компенсирован; 3 - при большом давлении, когда произошло обращение знака потенциала.

компенсация объёмного заряда в пучке отрицат. ионов (рис. 1, б). В этом случае при малом давлении газа накапливаемые медленные положит, ионы также лишь частично компенсируют объёмный заряд И. и. Однако при достаточно большом давлении газа происходит перекомпенсация объёмного заряда: за счёт накопления большого числа медленных положит, ионов потенциал в пучке изменяет свой знак и происходит "газовая фокусировка" пучка отрицательных ионов. <Др. способ компенсации объёмного заряда И. п. состоит в "принудительном" введении в И. п. пучков зарядов противоположного знака, т. е. в совмещениипучков. Так получают синтезированные ион-электронные или ион-ионные пучки с компенсированным объёмным зарядом; при этом одновременно с компенсацией объёмного заряда часто осуществляется необходимая токовая компенсация. В результате происходит переход к плазм, потокам, называемым в плотных И. п. ионно-пучковой плазмой. Из-за немаксвелловского распределения скоростей возникают коллективные явления - электронные и ионные колебания. Коллективные эффекты, приводя к изменению фазового объёма, также влияют на транспортировку И. п. <Для получения И. п. часто используют ионные источники с газоразрядными ионизац. камерами и тогда отбор ионов осуществляется не с фиксированной поверхности твёрдого тела, а с границы плазмы, перемещающейся при изменении внеш. условий или режима работы источника (рис. 2). В этом случае первичное

Физическая энциклопедия. В 5-ти томах ИОННЫЙ ПУЧОК

Рис. 2. Система первичного формирования ускоренного пучка ионов, извлекаемых из плазменного источника: 1, 2, 3 - электроды. I - вогнутая граница плазмы, II-плоская, III - выпуклая.

формирование И. п. связано с т. н. плазм. фокусировкой. При увеличении ускоряющей разности потенциалов Uграница плазмы из выпуклой (III) становится вогнутой (I), создаются условия для фокусировки пучка. Электрод 2с отверстием для пучка, имеющий потенциал ниже потенциала заземлённого электрода 3, удерживает электроны, компенсирующие ионный пучок, и ускоряет сам ионный пучок. В дальнейшем И. п. могут фокусироваться с помощью эл.-статич. и магн. линз (см. Электронные линзы). Сжатие И. п. связано с их "охлаждением" - уменьшением фазового объёма. Одним из методов охлаждения "горячего" И. п. является совмещение его с "холодным" электронным пучком. <В 80-е гг. получают квазистационарные И. п. с током до 100 А, импульсные - с током до сотен тысяч А. Важной проблемой остаётся транспортировка таких пучков. <И. п. широко применяются в самых разл. областях пауки и техники: в ускорителях, установках по осуществлению управляемого ионного термоядерного синтеза, в разнообразных технол. установках, масс-спектрометрии, установках для разделения изотопов, для исследования поверхности твёрдых тел, для т. н. сухого травления в технологии микроэлектроники и т. д. Лит.: Габович М. Д., Физика и техника плазменныхисточников ионов, М., 1972; его же, Ионно-пучковая плазма и распространение интенсивных компенсированных ионных пучков, "УФН", 1977, т. 121, с. 259; Семашко Н. Н. и др., Инжекторы быстрых атомов водорода, М., 1981; Быстрицкий В. М., Диденко А. Н., Мощные ионные пучки, М., 1984; Диденко А. Н., Лигачёв А. Е., Куракин И. Б., Воздействие пучков заряженных частиц на поверхность металлов и сплавов, М., 1987. М. Д, Габович.

В начало энциклопедии