Приглашаем посетить сайт

Ахматова (ahmatova.niv.ru)

Физическая энциклопедия. В 5-ти томах
КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ

КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ - устройства для получения эл.-магн. колебаний со стабильной во времени частотой. Среднеквадратичное относит. отклонение частоты (относит. нестабильность) и относит. погрешность воспроизведения действительного значения частоты (воспроизводимость) К. с. ч. достигает 10-14. К. с. ч.- основа эталонов времени и длины, широко применяются в измерит. технике, навигации и метрологич. службе. <В К. с. ч. используются наиб. стабильные квантовые переходы между энергетич. уровнями атомов или молекул, частоты к-рых расположены в дециметровом или более коротковолновых диапазонах длин волн l. Однако для большинства применений требуются высокостабильные колебания в радиодиапазоне, а для эталонов времени необходимы колебания с частотой 1 Гц, т. е. с периодом 1 с. Поэтому К. с. ч. содержат помимо устройства для наблюдения спектральной линии (квантового репера частоты) электронную схему преобразования частоты репера в др. частотные диапазоны. Типы К. с. ч. По способу наблюдения спектральной линии в квантовом репере К. с. ч. подразделяются на активные и пассивные. Активный репер является квантовым генератором. Применяют активные К. с. ч. на водородном генераторе и рубидиевом генераторе с оптич. накачкой (рис. 1).

Физическая энциклопедия. В 5-ти томах КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ

Рис. 1. Блок-схема активного квантового стандарта частоты.

В пассивном репере спектральная линия атомов используется для автоподстройки по ней частоты вспомогат. генератора. В этом случае квантовый репер работает как дискриминатор, определяющий величину и знак отклонения частоты вспомогат. генератора от её номинального значения и устраняющий это отклонение. В применяемых пассивных К. с. ч. реперные спектральные линии лежат в сантиметровом диапазоне l. При этом вспомогат. генератором служит кварцевый генератор, а электронная схема обеспечивает необходимое преобразование его частоты, наблюдение спектральной линии и автоподстройку по ней кварцевого генератора (рис. 2). Основой пассивных К. с. ч. является входящая в состав репера поглощающая ячейка, в к-рой атомы, максимально изолированныеот внеш. воздействий, избирательно поглощают эл.-магн. излучение с частотой f, формируемой синтезатором частот из частоты кварцевого генератора. Схема сравнения определяет величину и знак разности Df между частотой f и частотой спектральной линии f с

Физическая энциклопедия. В 5-ти томах КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ

Рис. 2. Блок-схема пассивного стандарта частот.

и вырабатывает управляющий сигнал kDf, смещающий частоту кварцевого генератора f к к её номинальному значению f н, при к-ром Df=f-f с=0. При этом весь набор частот, вырабатываемый синтезатором частот, максимально приближается к их номинальным значениям. К пассивным относятся К. с. ч. на пучке атомов Cs и Rb (см. Цезиевая атомно-лучевая трубка )и К. с. ч. на атомах Rb с оптич. накачкой и индикацией (см. Рубидиевый стандарт частоты).Если спектральная линия находится в ИК- или оптич. диапазоне, то вспомогат. генератором служит лазер.

Физическая энциклопедия. В 5-ти томах КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ

Рис. 3. Блок-схема оптического стандарта частоты: a - с внешним репером; б - свнутренним. Автоподстройка резонатора необходима для уменьшения эффекта затягивания частоты.

Поглощающая ячейка содержит разреженныйгаз, частота спектральных линий к-рого совпадает с частотой лазера (см. Оптические стандарты частоты).Стабильность частоты определяется в основном характеристиками спектральной линии в поглощающей ячейке: её относит. шириной Df с/f с и интенсивностью (пропорц. произведению квадрата матричного элемента перехода на разность населённостей его уровней), а также зависимостью её частоты от внеш. воздействий (магн. и электрич. полей, изменения темп-ры, давления и т. п.). Относит. ширина линии Df с/f с и её интенсивность определяют гл. обр. стабильность К. с. ч. за короткие времена наблюдения, а степень зависимости частоты от внеш. воздействий обусловливает долговрем. стабильность и воспроизводимость частоты. <Кратковрем. относит. нестабильность частоты обратно пропорц. в случае пассивной системы произведению добротности спектральной линии f с/Df с на отношение сигнал/шум при её индикации, а в случае активной системы - произведению f с/Df с на мощность квантового генератора. Т. к. мощность квантовых генераторов и отношение сигнал/шум пассивных реперов невелики, то для получения кратковрем. относит. нестабильности частоты ~10-12 -10-14 при времени усреднения t~1 с необходимо fc/Dfc/108-1010. Именно это обстоятельство ограничивает снизу диапазон частот для спектральной линии репера, т. к. линии с такой добротностью из-за уширения не обнаруживаются вплоть до частот ~1000 МГц (см. Ширина спектральных линий).Отношение сигнал/шум и мощность генерации линейно зависят от интенсивности линии. Поэтому для получения требуемого отношения сигнал/шум или мощности генерации необходимо иметь макс. разность населённостей уровней. Для этого используются: сортировка пучка атомов или молекул по энергиям с помощью неоднородного постоянного магн. или электрич. полей (водородный генератор, цезиевая трубка); оптич. накачка, приводящая к нарушению больцмановского распределения атомов по энергиям (рубидиевый генератор, рубидиевый К. с. ч. с оптич. накачкой и индикацией).Высокие требования к долговрeм. стабильности и воспроизводимости могут быть выполнены, если относит. нестабильность частоты спектральной линии репера [10-11-10-14 за обусловленное время. Такое значение можно получить только для переходов, слабо зависящих от электрич. и магн. полей в условиях ослабления др. внеш. воздействий. Выполнение этих же условий необходимо и для реализации высокой добротности спектральной линии, однако они, как правило, несовместимы с получением большой интенсивности линии. Наиб. перспективен способ наблюдений спектральной линии в атомном (или молекулярном) пучке. <Требованиям, предъявляемым к свойствам квантового перехода, для К. с. ч. в дециметровом и сантиметровом диапазонах lнаиб. полно удовлетворяют переходы F1=F, mF=0DF2=F+1, mF=0 между подуровнями магн. сверхтонкой структуры осн. состояния атомов Н, Та (F=0 )и щелочных металлов (F=1 для 87Rb, 23Na и F=2 для l33Cs) (см. Атомные спектры, Зеемана эффект).Наибольшего совершенства достигли активный К. с. ч. на водородном генераторе и пассивные на цезиевой трубке и атомах Rb с оптич. накачкой и индикацией (табл.).

Физическая энциклопедия. В 5-ти томах КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ

Атомное время. Для К. с. ч., используемых в службе времени, важнейшими характеристиками являются точность частоты (нескомпенсированная систематич. относит. погрешность воспроизведения частоты невозмущённого перехода) и относит. погрешностьвоспроизводимости. Эти характеристики наилучшие у К. с. ч. на цезиевой атомно-лучевой трубке. В 1964 Международный комитет по вопросам мер и весов принял в качестве эталона частоты переход F1=3, mF=0DF2=4, mF=0 между подуровнями сверхтонкой магн. структуры осн. состояния атомов 133Cs, не возмущённого внеш. полями, приписав его частоте значение 9192631770 Гц. Соответствующая шкала времени наз. атомной, а единица времени в ней - атомная секунда - определена как 9192631770 периодов резонансного колебания 137Cs. Т. о., К. с. ч. на цезиевой атомно-лучевой трубке признан первичным стандартом (эталоном), по отношению к к-рому стандарты др. типов являются вторичными. Лит.: Григорьянц В. В., Жаботинский М. Б., Золин В. <Ф., Квантовые стандарты частоты, М., 1968; Л е т о х о в B.C., Чеботаев В. П., Принципы нелинейной лазерной спектроскопии, М., 1975. В. Я. Базаров.

В начало энциклопедии