Приглашаем посетить сайт

Маркетплейс (market.find-info.ru)

Физическая энциклопедия. В 5-ти томах
МАГНЕТИЗМ

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

МАГНЕТИЗМ

МАГНЕТИЗМ - 1) особая форма взаимодействия электрич. токов и магнитов (тел с магнитным моментом )между собой и токов с магнитами. 2) Раздел физики, изучающий это взаимодействие и свойства веществ, в к-рых М. проявляется.

Основные проявления магнетизма

Магн. взаимодействие пространственно разделённых тел осуществляется магнитным полем H к-рое, как и электрич. поле Е, представляет собой проявление эл.-магн. формы движения материи (см. Электромагнитное поле). Между электрич. и магн. полями нет полной симметрии: источниками К являются электрич. заряды, но магн. зарядов ( магнитных монополей )пока не наблюдали, хотя теория (см. Великое объединение )предсказывает их существование. Источник магн. поля Н - движущийся электрич. заряд, т. е. электрич. ток. В атомных масштабах движение электронов и протонов создаёт орбитальные микротоки, связанные с переносным движением этих частиц в атомах или атомных ядрах; кроме того, наличие у микрочастиц спина обусловливает существование у них спинового магн. момента. Поскольку электроны, протоны и нейтроны, образующие атомные ядра, атомы, молекулы и все макротела (газы, жидкости, кристаллич. и аморфные твёрдые тела) имеют собств. магн. момент, то, в принципе, все вещества подвержены влиянию магн. поля - обладают магн. свойствами, т. е. являются магнетиками.

Известны два осн. эффекта воздействия внеш. магн. поля H вн на вещества: 1) по закону электромагнитной индукции при помещении тела в поле Н вн в теле возникает индукц. ток, магн. поле к-рого направлено против Н вн( Ленца правило), т. е. магн. момент вещества, создаваемый H вн, всегда направлен против поля (диамагнетизм веществ); 2) если атомы вещества имеют спонтанный магн. момент, то H вн ориентирует атомные магн. моменты вдоль своего направления и создаёт магн. момент вещества вдоль поля (парамагнетизм веществ). Существ. влияние на магн. свойства вещества могут оказывать и внутр. взаимодействия (электрич. и магн.) микрочастиц - носителей магн. момента. Иногда они приводят к спонтанной (не зависящей от H вн )упорядоченной ориентации магн. моментов частиц. Вещества, в к-рых атомные магн. моменты спонтанно ориентируются параллельно друг другу, наз. ферромагнетиками (ФМ) (см. Ферромагнетизм), а вещества, в к-рых ориентация отд. групп атомных моментов антипараллельна,- антиферромагнетиками (АФМ) (см. Антиферромагнетизм). Кроме таких коллинеарных ФМ- и АФМ-структур наблюдаются и неколлинеарные магнитные атомные структуры (винтовые или спиральные, треугольные и др.). Сложность атомной структуры веществ, построенных из огромного числа микрочастиц, даёт практически неисчерпаемое разнообразие их магн. свойств, связь к-рых с немагн. свойствами (электрич., механич., оптич. и др.) позволяет использовать исследования магн. свойств для получения информации о внутр. структуре и др. свойствах микрочастиц и макротел .

Огромный диапазон проявлений М.- от М. элементарных частиц до М. космич. тел (Земли, Солнца, звёзд и др.), а также космич. пространства - объясняет глубокий интерес к М. со стороны мн. наук (физики, астрофизики, геофизики, химии, биологии, геологии п др.) и его широчайшее применение в технике.

Магнетизм веществ

Макроскопич. проявления М. веществ рассматриваются в рамках теории эл.-магн. поля (см. Максвелла уравнения), термодинамики и статистической физики. Одной из осн. макрохарактеристик магнетика, определяющей его термодинамич. состояние, является вектор намагниченности М (суммарный магн. момент единицы объёма вещества) - ф-ция H и темп-ры Т. Зависимость M (H, Т )(см. Намагничивания кривые )имеет разл. вид у разных магнетиков. В ряде случаев эта связь линейна: Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ , где Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ - магнитная восприимчивость единицы объёма вещества (для диамагнетиков Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ , для парамагнетиков Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ). Для ФМ зависимость М (Н, Т )нелинейна и неоднозначна (см. Гистерезис магнитный): Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ у ФМ зависит не только от Т и свойств вещества, но также от Н и магн. предыстории. В термодинамике М определяется через потенциал термодинамический Ф (H, Т, Р )по ф-ле Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ (Р - давление).

Из общих положений классич. статистич. физики и электродинамики следует, что электронные системы не могут обладать устойчивым магн. моментом ( Бора - ван Лёвен теорема), что противоречит опыту. Квантовая механика, объяснившая устойчивость атомов, объяснила и существование устойчивых магн. моментов у атомов и макротел. М. электронной оболочки атомов и атомных ядер обусловлен спиновыми и орбитальными магн. моментами электронов и нуклонов (см. Атом, Ядро атомное и Магнетизм микрочастиц). У одноатомных инертных газов (Не, Ne, Аr и др.) электронные оболочки магнитно-нейтральны, и эти газы являются диамагнетиками (ДМ). Электронная оболочка атомов щелочных металлов (Li, Na, К и др.) в невозбуждённом состоянии обладает лишь спиновым магн. моментом валентного электрона (s -состояние, орбитальный магн. момент =0). Т. о., атомы этих веществ парамагнитны. У атомов переходных d -металлов (Fe, Co, Ni и др. 3d-, 4d- и 5d- хим. элементы), редкоземельных 4/-металлов (РЗМ), актинидов (U и др.) и трансуранов не достроены внутренние а- и f -слои электронных оболочек. Спиновые и орбитальные магн. моменты электронов этих слоев не скомпенсированы ( Хунда правило), что приводит к существованию у атомов и ионов этих хим. элементов спонтанных магн. моментов.

Магн. свойства веществ определяются природой атомных носителей М. и характером их взаимодействии: вещество одного хим. состава в зависимости от внеш. условий, кристаллич. и фазовой структуры, степени атомного порядка в сплаве н т. п. может обладать разл. магн. свойствами. Более простая картина реализуется в газах и (в определённой степени) в кристаллич. и аморфных диэлектриках. Однако в проводниках (металлах и сплавах) всё усложняется из-за наличия в них коллективизиров. электронов (бывших валентных), к-рые сами являются источниками М. В переходных металлах из-за взаимодействия коллективизиров. электронов с магн. моментами d- и f -оболочек (а также взаимодействия между этими самыми оболочками из-за перекрытия волновых ф-ций соседних атомов, что имеет место гл. обр. для d -оболочек) нарушается строгая атомная локализация электронов этих оболочек, возникает гибридизация s- и d, f -состояний (см. Гибридизация атомных орбиталей). В результате атомные магн. моменты, особенно d -оболочек, оказываются изменёнными по сравнению с моментами изолиров. атомов. Т. о., в металле магн. момент иона обусловлен самим ионом и окружающим его облаком коллективизиров. s -электронов, а также, по крайней мере, частично р-, d- и даже f -электроном, намагниченным, как правило, антипараллелыю магн. моменту локализованных d -или f -оболочек (что может приводить к т. н. экранированию Кондо). Наиб. ярко это проявляется при очень низких темп-pax и в сильно разбавленных растворах магн. ионов в диамагн. матрице - при ТФизическая энциклопедия. В 5-ти томах МАГНЕТИЗМ Т K, где Т K - темп-pa Кондо. При ТФизическая энциклопедия. В 5-ти томах МАГНЕТИЗМTK. экранирование разрушается. В случае более концентриров. растворов или чистых d -металлов сами d -электроны могут быть полностью или частично коллективизированы и представление о локализованном магн. моменте либо вообще теряет смысл, либо требует специального рассмотрения. Здесь имеет место М. коллективизиров. электронов, в к-ром надо учитывать два эффекта: 1) обменный, обусловленный Паули принципом,- электроны с параллельными спинами располагаются на больших взаимных расстояниях, чем с антипараллельными, а между ними возникают обменные дырки (или дырки Ферми), что уменьшает эл.-статич. энергию их взаимодействия (в изолиров. атомах это объясняет правило Хунда); 2) динамич. корреляционный: кулоновское отталкивание стремится удалить электроны друг от друга (независимо от ориентации их спинов), что создает т. п. корреляционную дырку (см. Корреляционная энергия). Уменьшение энергии электронов из-за этих эффектов приводит к росту их фермиевской кинетич. энергии. В результате конкуренции двух видов энергий в системе электронов устанавливается равновесие (см. ниже). Необходимо также учитывать детали кривых плотности состояний электронов вблизи ферми-поверхности (ферми-уровня) и спиновые флуктуации. На магн. моменты d- и f -оболочек оказывает также сильное влияние эл.-статич. взаимодействие окружающих ионов матрицы (лигандов), к-рое иногда может радикально изменить магн. состояние ионов (см. "Замораживание" орбитальных моментов).

Количественно взаимодействие между атомными носителями М. в веществе можно охарактеризовать величиной энергии этого взаимодействия e вз, рассчитанной на отд. пару частиц - носителей магн. момента. Энергию Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ сопоставляют с энергией частицы, имеющей магн. момент Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ (см. Магнетон )в нек-ром эффективном магн. поле H эф, т. е. с Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ и со ср. энергией теплового движения частицы при нек-рой критич. темп-ре T кр, т. е. с Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ При H<H Эф и ТФизическая энциклопедия. В 5-ти томах МАГНЕТИЗМ Т кр будут сильно проявляться магн. свойства вещества, определяемые внутр. взаимодействиями атомных носителей М., (т. н. кооперативный или "сильный" М. веществ). Наоборот, при Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ или Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ доминируют внеш. факторы ( Н и Т), подавляющие эффект внутр. взаимодействия Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ (т. н. некооперативный, или "слабый", М. веществ). Для полного выяснения природы М. веществ надо знать физ. генезис Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ и характер атомных магн. носителей М. Если не рассматривать ядерный М., то в электронных оболочках атомов и молекул, а также в электронной системе веществ действуют два типа сил - электрич. и магнитные. Мерой первых является эл.-статич. энергия двух электронов на расстоянии порядка размера атома а( а~ ~10-8 см): Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ эрг. Мерой магн. взаимодействий является энергия связи двух атомных магн. моментов на расстоянии а, т. е. Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМэрг. Т. о., Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ на 4 порядка. Поэтому сохранение ферромагнетизма, напр. у Fe, Co и Ni до Т крФизическая энциклопедия. В 5-ти томах МАГНЕТИЗМ1000 К, может быть обусловлено только электрич. взаимодействием, т. к. Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ способно обеспечить ФМ лишь до Т крФизическая энциклопедия. В 5-ти томах МАГНЕТИЗМ1 К.

Можно рассматривать Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ как малое возмущение по сравнению с Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ Однако у хим. элементов с большой атомной массой - у РЗМ и актинидов - магн. моменты атомов достигают Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ, и поэтому Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ возрастает в них на 2 порядка. Согласно квантовой механике (в силу принципа Паули), наряду с квазикулоновским эл.-статич. взаимодействием электронов существует чисто квантовое эл.-статич. обменное взаимодействие, зависящее от взаимной ориентации спиновых моментов электронов. Это эл.-статич. по своему генезису взаимодействие e об оказывает существ. влияние на магн. состояние электронных систем. В частности, оно благоприятствует атомному магн. порядку. Верхний предел Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ эрг. Если М. некооперативный, то магн. порядок устанавливается лишь внеш. полем H вн, а магн. беспорядок - темп-рой. В случае кооперативного М. роль обменного взаимодействия превалирует, а поле H вн лишь помогает обнаружить внутр. магн. порядок. Положит. знак Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ способствует параллельной ориентации атомных магн. моментов, т. е. ферромагнетизму. При Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ имеет место тенденция к антиферромагн. упорядочению. В некоторых случаях возможно так называемое смешанное обменное взаимодействие, когда для различных соседних магнитных атомов энергия e об меняет знак.

В веществах различают обменную связь двух типов: 1) прямой обмен между двумя соседними магн. ионами, когда их волновые функции сильно перекрываются. В этом случае взаимодействие короткодействующее, экспоненциально убывающее с расстоянием между ионами. Для двух электронов в одной атомной оболочке всегда Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ , и поэтому атомы d -металлов, РЗМ и актинидов всегда имеют спонтанный магн. момент. В общем случае для соседних ионов в веществе e об может быть как Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ0 так и Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ0 (в зависимости от их электронной структуры). 2) Непрямой обмен между удалёнными магн. ионами, когда практически нет перекрытия их волновых ф-ций и связь осуществляется промежуточными агентами (в диэлектриках и полупроводниках это косвенное обменное взаимодействие через немагн. ион-лиганд, находящийся между двумя магн. ионами, а в металлич. системах связь, напр. между соседними /-слоями, осуществляется электронами проводимости (см. РККИ-обменное взаимодействие). Обменное взаимодействие этого типа - дальнодеиствующее Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ и осциллирующее с переменой знака.

Изложенное позволяет провести физ. классификацию магн. свойств веществ.

Некооперативный магнетизм слабовзаимодействующих магнитных частиц Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ .Преобладание диамагнетизма. К веществам этого класса относятся: а) все инертные газы; все газы, атомы и молекулы к-рых не имеют спонтанных магн. моментов. У них Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ, очень мала по абс. величине (молярная восприимчивость Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ и от Т практически не зависит; б) органич. соединения с неполярной связью, в к-рых молекулы или радикалы не имеют магн. момента или у них парамагнетизм подавлен диамагнетизмом; у таких веществ восприимчивость Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ, практически не зависит от Т, но обладает заметной анизотропией; в) нек-рые металлы (Сu, Zn, Au, Hg, и др.), растворы, сплавы и хим. соединения (напр., галоиды), в к-рых ионные остовы (Li+, Be2+, А13+, С1- и др.) подобны атомам инертных газов, в связи с чем они обладают диамагнетизмом.

Преобладание парамагнетизма характерно для: 1) веществ, у к-рых атомы (ионы, молекулы) обладают магн. моментом. К ним относятся газы (О 2, N0) ж пары щелочных и переходных металлов со значениями Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ При не очень низких T и B не очень сильных полях Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ не зависит от H, но существенно зависит от Т:Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ( Кюри закон), С - постоянная Кюри; в сильных магн. полях и при достаточно низких Т у этих веществ наблюдается магн. насыщение; 2) ионов переходных элементов в жидкой фазе, в кристаллич. и аморфных соединениях при слабом взаимодействии ионов друг с другом и изотропном атомном окружении. При Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМих магн. восприимчивость Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ не зависит от Я, а их зависимость от Т описывается Кюри - Вейса законом:Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ где С' - постоянная, а Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ- парамагнитная точка Кюри, характеризующая взаимодействие магн. ионов, т. е. в этом случае проявляется уже нек-рый кооперативный характер парамагнетизма; 3) ферромагнетиков и антиферромагнетиков выше точек Кюри и Нееля ( Тс и TN).

Особо следует выделить ряд специфич. магн. состояний веществ. Так, ниже нек-рой критич. темп-ры Т сп в кристаллич. и аморфных парамагнетиках может возникнуть сперомагнетизм, для к-рого характерна "замороженность" магн. моментов ионов в произвольных направлениях (равновероятно по всем направлениям), причём магн. моменты не испытывают флуктуации ориентации, как в идеальных парамагнетиках. Модификацией подобного магн. состояния является идеальное спиновое стекло, осн. признаком к-рого является максимум на кривой Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ( Т )при темп-ре замерзания спинового стекла T сс. Наиболее типичные спиновые стёкла - разбавленные растворы атомов d -металлов в диамагнитной матрице (Си, Аи и др.) в определ. интервале концентраций С (между С мин - пределом разбавления и С макc -пределом протекания). При Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ магн. ион полностью экранирован электронами проводимости матрицы от взаимодействия с др. магн. ионами и магн. упорядочение отсутствует. При Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ возникает кооперативный ФМ или АФМ. В спиновых стёклах магн. ионы связаны либо РККИ-обменом (положительным или отрицательным), либо чисто антиферромагн. взаимодействием [здесь могут быть случаи, когда магн. момент со своими соседями связан обменными взаимодействиями противоположных знаков, что может привести к структурной неравновесности (фрустрации )и, как следствие, к магн. гистерезису]. Если в спиновом стекле при росте С возникают локальные корреляции ионов - двух-, и трёх- и многоионные кластеры, связанные прямым обменом в единое образование, внедрённое в немагн. матрицу, то при Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ это кооперативное состояние наз. миктомагнетизмом. Состояние спинового стекла весьма типично для неупорядоченных магнетиков, в к-рых ориентации магн. ионов и их местоположения распределены случайно. Если в сперомагн. системе появится преимуществ. ориентация у фиксированных магн. моментов в немагнитной матрице, то это состояние наз. асперомагнетизмом (примером таких кристаллических веществ являются GdAg, YbFe3, GdAl2, аморфных веществ - DyNi3, TbAg). В зависимости от соотношения анергий обмена e и анизотропии Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ могут быть два типа асперомагнетизма: 1) Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ векторы М в отд. областях (доменах) сильно закреплены и внеш. поле H вн не может довести образец до магн. насыщения даже при Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ Тл; 2) при Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ направления М в доменах закреплены менее жёстко и уже в не очень сильных полях возможно достичь магн. насыщения.

В слоистых кристаллич. веществах, когда атомные расстояния в нек-.рых системах атомных плоскостей сильно отличаются от расстояний между этими плоскостями, может наблюдаться различие знаков e между атомами в плоскости и между атомами соседних плоскостей. Это может привести к т. н. геликоидальной магн. атомной структуре, когда, напр., отд. плоскости намагничены ферромагнитно, а при переходе от одной плоскости к соседней вектор поворачивается на небольшой угол (шаг такой спирали не обязательно соответствует параметру кристаллич. решётки вдоль оси с, перпендикулярной атомным плоскостям). Типичными веществами с геликоидальным М. являются MnAu2, MnO2 и РЗМ (в последних это связано с взаимодействием РККИ); могут быть и более сложные спиральные магн. структуры, напр. в РЗМ вектор М при переносе вдоль оси с может вращаться не в плоскости, а по поверхности конуса.

Магнетизм электронов проводимости в металлах, полупроводниках н сверхпроводниках. Парамагнетизм электронов проводимости (спиновый Паули парамагнетизм) наблюдается у щелочных (Li, Na, К и др.), щёлочноземельных (Са, Sr, Ва и др.) и переходных (3d-, 4d- и Sd-металлов, кроме Fe, Co, Ni, Сг и Мп) металлов, у них магн. восприимчивость Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ~ Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ , она не зависит от поля и очень слабо меняется с темп-рой. В ряде металлов этот парамагнетизм маскируется более сильным диамагнетизмом ионных остовов. Если в парамагн. металле обменное взаимодействие недостаточно, чтобы создать устойчивый ферромагнетизм, но может образовывать временные ферромагн. флуктуации (парамагноны) в ограниченных областях с числом электронов Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ , к-рые с понижением темп-ры становятся всё более устойчивыми и в пространстве и во времени, то наблюдается обменно усиленный парамагнетизм Паули (наиб. ярко в Pd, Pt, TiBe2 и ряде др. металлов). Может также наблюдаться усиление магн. моментов отд. ионов переходных металлов в диамагн. металлич. матрице за счёт спиновых флуктуации около атомов примеси.

Диамагнетизм электронов проводимости металлов (диамагнетизм Ландау) присущ всем металлам, но наблюдается не так часто и лишь при условии, что его не маскирует либо более сильный парамагнетизм Паули, либо диамагнетизм или парамагнетизм ионных остовов. Но могут быть и исключения, например аномально сильный диамагнетизм у Bi.

Парамагнетизм и диамагнетизм электронов проводимости в полупроводниках (ПП). В ПП число электронов проводимости растёт с ростом Т, поэтому c дм и c пм зависят от Т. Типичные ПП, напр. Ge и Si, диамагнитны. Имеется ещё два важных типа магн. ПП: а) ПП, обладающие ферромагнетизмом, как правило ферримагнетизмом (ферриты и др., см. ниже), и б) узкощелевые или бесщелевые разбавленные ПП - т. н. полумагнитные полупроводники, в основном - это твёрдые растворы халькогенидов Hg (HgTe, HgSn и т. п.) и переходных d -металлов или редкоземельных металлов (MnTe, MnSe, EuTe и др.). Вариации состава этих веществ существенно меняют их электронный энергетич. спектр (от бесщелевого до спектра с большой энергетич. щелью), что приводит и к существ. изменению их магн. свойств (напр., к магнитному фазовому переходу из парамагн. состояния в состояние спинового стекла).

М. сверхпроводников (СП) (см. Сверхпроводимость )обусловлен электрич. токами, текущими в тонком поверхностном слое (Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ см), к-рые экранируют толщу СП от внеш. магн. полей, поэтому в массивных СП при Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ магн. индукция В=0 (Мейснера эффект). СП являются в определ. смысле антиподами ФМ и АФМ, т. е. их спонтанное магн. поле должно разрушать сверхпроводимость (разрывать куперовские пары электронов, см. Купера эффект). Однако в нек-рых тройных соединениях РЗМ (НоМо 6S8, ErRh4B4 и др.) в ограниченной области темп-р обнаружено сосуществование СП и ФМ (см. Магнитные сверхпроводники). В оксидных высокотемпературных сверхпроводниках существует сложная связь между свсрхпроводя-щим и магнитоупорядоченным состояниями.

Магн. свойства системы электронов проводимости в металлах и ПП неразрывно связаны с их упругими, тепловыми, оптич. и др. свойствами (см. Магнитоупругое взаимодействие, Гальваномагнитные явления, Магнитооптика).

Магнетизм веществ с атомным магнитным порядком (Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ H или Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ'). Ферромагнетизм наблюдается в веществах с Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ в кристаллических Fe, Co, Ni, в РЗМ (Gd, Tb, Dy, Но, Еr и Тm), в бинарных и более сложных сплавах и соединениях этих элементов между собой и с др. элементами (переходными и нормальными), в сплавах Сr, Мn (т. н. гейслеровых сплавах), сплавах парамагн. переходных элементов с нормальными элементами (Zr-Zn, Sc-In, Au-V и др.), в соединениях урана. Для ФМ характерна спонтанная намагниченность Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ при Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ ( Т с - точка Кюри). Известны случаи, когда нижняя температурная граница ферромагнетизма Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ К. При Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ ФМ переходят либо в ПМ с Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ (казалось бы, для ферромагн. металлов при Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ должен наблюдаться парамагнетизм Паули, однако учёт спиновых флуктуации показал, что для магн. восприимчивости Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ должен выполняться закон Кюри - Вейса), либо в АФМ (напр., в нек-рых РЗМ). При Н вн=0 результирующая намагниченность ферромагн. образца (если исключить вторичное явление остаточной намагниченности) также отсутствует. Это объясняется тем, что при охлаждении ФМ от Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ до Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ и при Н ВН=0 образец ФМ спонтанно разбивается на малые области - домены с Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ , но при этом ориентация векторов в разных доменах такова, что суммарная намагниченность многодоменного образца равна нулю (см. Магнитная доменная структура, Ферромагнитные домены). В поле Н вн доменная структура меняется благодаря двум осн. процессам (см. Намагничивание): росту объёма доменов, в к-рых векторы М направлены относительно H вн энергетически более выгодно, за счёт менее выгодно намагниченных доменов, реализуемого смещением границ доменов (процессы смещения) и повороту векторов М из их первонач. положения вдоль осей легчайшего намагничивания по направлению внеш. поля (процессы вращения). В результате этих процессов намагничиваемый образец приобретает суммарный магн. момент - макроскопич. намагниченность (см. Парапроцесс). Намагниченность М ФМ зависит не только от H и Т, но также и от магн. предыстории образца, это явление неоднозначной зависимости М от Н наз. магн. гистерезисом. При выключении Н ВН образец может сохранить остаточную намагниченность М r и для его полного размагничивания нужно приложить обратное магн. поле ( -Н с), к-рое наз. коэрцитивной силой. В зависимости от величины Н с различают магнитно-мягкие материалы (Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ. А/м, или 10 Э) и магнитно-твёрдые материалы (высококоэрцитивные) (Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМкА/м, или 50 Э). Значения М r и Н с зависят от природы в-ва, от темп-ры и, как правило, убывают с её ростом, стремясь к нулю при Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ Доменная структура энергетически выгодна лишь в достаточно объёмных образцах. С уменьшением размера образца разбиение его на домены может стать энергетически невыгодным и он становится однодоменным с М=М s. Из-за тепловых флуктуации магн. момент одного домена может вести себя как атомный магн. момент в идеальном парамагнетике (ПМ), такое явление наз. суперпарамагнетизмом.

Антиферромагнетизм наблюдается в веществах с Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ в кристаллич. Сr, Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ -Мn, в ряде РЗМ (Се, Рr, Nd, Pm, Sm, Eu), а также в многочисленных соединениях (оксидах, сульфидах Fe, Ni, Mn и др. элементов), сплавах (Fe3Mn, CrPt и др.) и аморфных веществах, содержащих атомы переходных элементов. Кристаллич. решётка этих веществ разбивается на две или более магнитные подрешётки, в к-рых векторы Ms либо антипараллельны (коллинеарная магнитная атомная структура), либо направлены под углом друг к другу, отличным от p (неколлинеарная структура). Антиферромагнетизм наблюдается в интервале темп-р от О К до точки Нееля TN. При ТФизическая энциклопедия. В 5-ти томах МАГНЕТИЗМ Т N АФМ становится ПМ и его восприимчивость Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМописывается в большинстве случаев законом Кюри - Вейса. При ТФизическая энциклопедия. В 5-ти томах МАГНЕТИЗМTN Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ с понижением темп-ры уменьшается из-за роста магн. упорядоченности. В АФМ различают Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ и Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ - магн. восприимчивости вдоль и поперёк оси антиферромагнетизма - направления, в к-ром ориентируются векторы М s магн. подрешёток при Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ

В зависимости от того, равен или неравен нулю суммарный момент всех магн. подрешёток АФМ, различают скомпенсированный антиферромагнетизм и нескомпенсированный антиферромагнетизм, или ферримагнетизм. В ферримагнетиках (ФИМ) имеются магн. ионы двух или более типов разной хим. природы или одной природы, но разной валентности (напр., Fe2+ и Fe3+ ), либо ионы одной хим. природы, одной валентности, но имеющие в магн. подрешётках разное число узлов в единице объёма образца. Ферримагнетизм реализуется гл. обр. в кристаллах окислов d -металлов с решётками типов шпинели, граната, перовскита и др. (т. н. ферритах МО*Fe2O3, где М обозначает Fe, Ni, Co, Mn и др.). Эти вещества, как правило, по электрич. свойствам - ПП или диэлектрики, по магн. свойствам они похожи на ФМ [с нек-рыми отличиями в ходе температурных зависимостей Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ . У аморфных ФИМ (напр., Gd30Co70, TbFe2 и др.) магн. ионы двух или более сортов размещены в пространстве случайно. Нек-рой модификацией кристаллич. ФИМ являются (уже упоминавшиеся выше) сперомагнетики (СИМ), в них магн. моменты одного из сортов магн. ионов "заморожены" со случайной ориентацией. Преобладание ферромагн. упорядочения в системе одного из сортов магн. ионов приводит к тому, что СИМ обладают суммарной спонтанной намагниченностью (Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ).

В АФМ возможно спонтанное нарушение полной компенсации намагниченности подрешёток в результате релятивистского взаимодействия Дзялошинского - Мория (возмущения магн. спин-орбитального взаимодействия взаимодействием орбиталей магн. ионов при наличии косвенного обменного взаимодействия); в итоге имеет место слабый ферромагнетизм (СФМ) с Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ от обычных значений М s для ФМ (типичные представители СФМ: Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМ-F2O3, карбонаты ряда металлов, ортоферриты и др.).

Кроме упомянутых выше спиновых стёкол магн. упорядочение наблюдается в очень широком классе аморфных металлич. веществ - металлических стёклах (метглассах), обладающих рядом специфич. свойств (Fe80B20, Fe78Mo2B20, Fe40N40P14B6, Ni60Nb40 и др.). Металлич. стёкла практически почти лишены магн. анизотропии, что делает их очень хорошими магнитномягкими материалами.

Научные и технические проблемы магнетизма

Осн. научными проблемами совр. М. являются: 1) выяснение природы обменного вза: одействия и взаимодействий, определяющих анизотропию в разл. магнетиках; объяснение спектров элементарных магн. возбуждений ( магнонов )и механизма их взаимодействий между собой и с др. модами элементарных возбуждений в веществе - фононами, электронами проводимости, экситонами и др. 2) Проблема нелинейной динамики доменных стенок - солитоное магнитных (связанных состояний большого числа магнонов). 3) Развитие теории магнитных фазовых переходов между различными магн. состояниями (ФМ-ПМ, ФМ-АФМ и др., в том числе т. н. ориентационные фазовые переходы). Здесь важное место занимают представления о волнах зарядовой и спиновой плотности, а также спонтанного нарушения магнитной симметрии (см. Волны зарядовой плотности, Спиновой плотности волны).

М. веществ широко используется как средство изучения хим. связей и структуры молекул (см. Магнетохимия). Изучение диамагнетизма и парамагнетизма газов, жидкостей, растворов и соединений в твёрдой фазе позволяет разобраться в деталях физ. и хим. процессов, протекающих в этих веществах, и происходящих в них структурных изменениях. Изучение магн. динамич. характеристик ( магнитного резонанса и релаксации )помогает понять кинетику многих физ. и физ.-хим. процессов. Интенсивно развивается магне-тобиология, а также применение М. в медицине (см. Магнитные поля биологических объектов).

Связь М. и оптич. свойств веществ приводит к огромному числу физ. эффектов (см. Зеемана эффект, Фарадея эффект, Коттона - Мутона эффект, Ханле эффект и др.), в т. ч. к влиянию света на возникновение и изменение магн. порядка.

К важнейшим проблемам М. космоса относятся: выяснение происхождения магн. полей Земли, др. планет, Солнца, звёзд (в частности, пульсаров), радиогалактик, квазаров и др. астрономич. объектов, а также роли магн. полей в космич. пространстве (см. Межзвёздная среда).

Проблемы технич. применений М. входят в число важнейших в электротехнике, приборостроении, вычислит. технике, автоматике и телемеханике, навигации. В технике широкое применение нашли магн. дефектоскопия и др. магн. методы контроля. Очень важную роль играют измерения магн. характеристик электротехнич. и радиотехнич. материалов. Магн. материалы идут на изготовление магнитопроводов электрич. генераторов, моторов, трансформаторов, реле, магн. усилителей, элементов магн. памяти, лент и дисков магн. записи, стрелок магн. компасов, магнитострикционных излучателей и приёмников и т. д.

Историческая справка

Первые письменные свидетельства о М. (Китай) имеют более 2000-летнюю давность, в них упоминается об использовании естеств. постоянных магнитов в качестве компасов. В работах древнегреч. и римских учёных упоминается о притяжении и отталкивании магнитов и о намагничивании магнитом железных опилок (напр., у Лукреция Кара в поэме "О природе вещей", 1 в. до н. э.). В средние века в Европе широко применялся магн. компас (с 12 в. н. <э.), предпринимались эксперименты по изучению свойств магнитов [Пьер де Марикур (Pierre de Maricourt), Франция, 1269]. Результаты исследований М. в эпоху Возрождения обобщены У. Гильбертом (W. Gilbert) в трактате "О магните, магнитных телах и о большом магните - Земле" (1600). В этом труде показано, что Земля - диполь магнитный, и доказана невозможность разъединения двух разноимённых магн. полюсов. Далее учение о М. развивалось в трудах Р. Декарта (R. Descartes), Ф. Эпинуса (F. Aepinus) и Ш. Кулона (Ch. Coulomb). Декарт- первый автор метафиз. теорий М. и геомагнетизма ("Начала философии", ч. 4, 1644); он исходил из существования особой магн. субстанции, обусловливающей своим движением М. тел. В трактате "Опыт теории электричества и магнетизма" (1759) Эпинус подчеркнул сходство электричества и М., а Кулон (1785-89) показал и определ. количеств. соответствие явлений: взаимодействие точечных магн. полюсов подчиняется тому же закону, что и взаимодействие точечных электрич. зарядов (Кулона закон). В 1820 X. Эрстед (Н.Физическая энциклопедия. В 5-ти томах МАГНЕТИЗМrsted) открыл магн. поле электрич. тока, и тогда же А. Ампер (A. Ampere) установил законы магн. взаимодействия токов, эквивалентность магн. свойств кругового тока и тонкого плоского магнита; М. веществ он объяснил существованием молекулярных токов. В 30-х гг. 19 в. К. Гаусс (С. Gaub) и В. Вебер (W. Weber) развили математич. теорию земного магнетизма и разработали методы магн. измерений.

Новый этап изучения М. начался с М. Фарадея (М. Faraday), к-рый дал последоват. трактовку М. на основе представлений о реальном эл.-магн. поле. Ряд важнейших открытий в области электромагнетизма (электромагнитная индукция - Фарадей, 1831; правило Ленца - Э. X. Ленц, 1833, и др.), теоретич. обобщение эл.-магн. явлений в трудах Дж. К. Максвелла (J. С. Maxwell, 1872), систематич. изучение свойств ФМ и ПМ А. Г. Столетовым (1872), П. Кюри (P. Curie, 1895) и др. заложили основы совр. макротеории М. Изучение М. на микроуровне стало возможным после открытия электронно-ядерной структуры атомов. На основе классич. электронной теории вещества X. А. Лоренца (Н. A. Lorentz) П. Ланжевен (P. Langevin) создал теорию диамагнетизма и парамагнетизма. В 1892 Б. Л. Розинг и в 1907 П. Вейс (P. Weiss) высказали идею о существовании внутр. молекулярного поля, обусловливающего ферромагнетизм. Открытие спина электрона и его М. [С. Гаудсмит (S. Goudsmit), Дж. Уленбек (G. Uhlenbeck), 1925], создание квантовой механики привели к развитию квантовой теории диа-, пара- и ферромагнетизма. На основе квантовой механики (пространств. квантования) Л. Бриллюэн (L. Brillouin, 1926) нашёл зависимость намагниченности ПМ от Я и Т. В 1927 Ф. Хунд (F. Hund) провёл сравнение экспе-рим. и теоретич. значений эффективных магн. моментов ионов в разл. парамагн. солях, что привело к открытию влияния электрич. полей парамагн. кристалла на "замораживание" орбитальных моментов ионов. Исследование этого явления позволило установить, что, напр., ферромагнетизм d -металлов определяется почти исключительно спиновыми моментами [У. Пенни (W. Penney), Р. Шлапп (R. Schlapp), Дж. X. Ван Флек (J. H. Van Vleck), 1932].

Детальная квантовая теория парамагнетизма атомов и молекул была разработана Ван Флеком в 1932, к-рый наряду с обычным классич. ориентац. парамагнетизмом открыл т. н. ванфлековский парамагнетизм (поляризационный), связанный с виртуальными квантовыми переходами электронов между стационарными энерге-тич. уровнями атомов или молекул. В 1927-30 была построена квантовомеханич. теория М. электронов проводимости металлов (см. Паули парамагнетизм, Ландау диамагнетизм). Существ. значение для развития теории парамагнетизма имело предсказанное Я. Г. Дорфманом (1923) и открытое Е. К. Завойским (1944) явление электронного парамагнитного резонанса (ЭПР). Созданию квантовой теории ферромагнетизма предшествовали работы (1925) Э. Изинга (Е. Ising, одномерная модель ПМ) и Л. Онсагер (L. Onsager, двумерная модель), Я. Г. Дорфмана (1927, им была доказана немагн. природа молекулярного поля), В. Гейзенберга (W.Heisenberg, квантовомеханич. расчёт атома Не, 1926), В. Гайтлера и Ф. Лондона (W. Heitler, F. London, расчёт молекулы Н 2, 1927). В двух последних работах был использован открытый в квантовой механике эффект обменного взаимодействия электронов [П. Дирак (P. Dirac), 1926] в оболочке атомов и молекул и установлена его связь с магн. свойствами электронных систем, подчиняющихся Ферми - Дирака статистике (Паули принцип). Квантовая теория ферромагнетизма была начата работами Я. И. Френкеля (1928, коллективизиров. модель ферромагн. металлов) и Гейзенберга (1928, модель локализованных спинов). Рассмотрение ферромагнетизма как кооперативного явления [Ф. Блох (F. Bloch) и Дж. Слэтер (J. Slater), 1930] привело к открытию спиновых волн. В 1932-33 Л. Неель (L. Neel) и Л. Д. Ландау предсказали существование антиферромагнетизма. Затем Неель объяснил сущность ферримагнетизма. Изучение новых классов магнетиков - АФМ и ферритов - позволило глубже понять природу М. вообще. Была выяснена роль магнитоупругой энергии в происхождении энергии магн. анизотропии и в явлении магнитострикции. Начиная с 1931 стали разрабатываться методы наблюдения магн. доменной структуры ФМ [1931, Ф. Биттер (F. Bitter); 1932, Н. С. Акулов, метод порошковых фигур]. Создание теории доменной структуры началось с работ Я. И. Френкеля и Я. Г. Дорфмана (1930) и особенно после работы Л. Д. Ландау и Е. М. Лифшица (1935, см. Ландау - Лифшица уравнение).

Дальнейшее развитие квантовомеханич. моделей М. металлов и ПП, рассматривавшихся в работах Я. И. Френкеля (1928), Ф. Блоха (1930) и Э. Стонера (Е. Stonег, 1930), было осуществлено в работах С. П. Шубина и С. В. Вонсовского (1934, полярная и обменная s-d, f модели ферромагнетизма, см. Шубина - Вонсовского модель). Частным случаем полярной модели является Хаббарда модель (J.Hubbard, 1964). Теория М. продолжает интенсивно развиваться, этому в значит. мере способствует создание новых эксперим. методов исследования веществ. Нейтронографич. методы (см. Магнитная нейтронография )позволили определить типы атомных магн. структур. Ферромагнитный резонанс, открытый и исследованный в работах В. К. Аркадьева (1913), а затем Дж. Гриффитса (J. Grifflts, 1946), и антиферромагн. резонанс [К. Гортер (С. Gorter) и др., 1951] открыли возможность исследования процессов магн. релаксации, а также дали независимый метод определения эффективных полей анизотропии в ФМ и АФМ. Физ. методы исследований, осн. на явлении ядерного магнитного резонанса[Э. Пёрселл (Е. Purcell) и др., 1946], и Мёссбауэра эффект(1958) существенно углубили знания о пространств. распределении спиновой плотности в веществе, особенно в магн. металлах. Наблюдения рассеяния нейтронов и света позволили для ряда веществ определить спектры спиновых волн. Параллельно с эксперим. работами развивались и разл. аспекты теории М.: магн. симметрия кристаллов, ферромагнетизм коллективизиров. электронов, применения новых расчётных методов в теории М. (диаграммная техника, методы Грина функции и т. п.), изучение магн. фазовых переходов и критич. явлений, разработка моделей квазиодномерных и двумерных магнетиков. Открытие и исследование квантового Холла эффекта[К. Клитцинг (К. Klitzing), 1980], Кондо эффекта, веществ с переменной валентностью, примосных систем кондовского типа, вещества с тяжёлыми фермионами - всё это позволило глубже понять магн. свойства веществ.

Успехи в изучении магн. явлений позволили осуществить синтез новых перспективных магн. материалов: ферритов для СВЧ-устройств, высококоэрцитивных соединений типа SmCo5 (см. Магнит постоянный), прозрачных ферромагнетиков, магн. плёнок типа "сендвичей" с уникальными магн. свойствами, аморфным магнетиков (в т. ч. спиновых стёкол, метглассов), веществ с цилиндрическими магнитными доменами и др. Лит.: Тамм И. Е., Основы теории электричества, 9 изд., М., 1976; Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Ландау Л. Д., Лифшиц Е. М., Электродинамика сплошных сред, 2 изд., М., 1982; Маттис Д., Теория магнетизма. Введение в изучение кооперативных явлений, пер. с англ., М., 1967; Вонсовский С. В., Магнетизм, М., 1971; Уайт Р., Квантовая теория магнетизма, пер. с англ., 2 изд., М., 1985; Тикадзуми С., Физика ферромагнетизма. Магнитные свойства вещества, пер. с япон., М., 1983; Xёрд К. М., Многообразие видов магнитного упорядочения в твёрдых телах, пер. с англ., "УФН", 1984, т. 142, с. 331.

С. В. Вонсовский.

В начало энциклопедии