Приглашаем посетить сайт

Религия (religion.niv.ru)

Физическая энциклопедия. В 5-ти томах
КРИСТАЛЛОФИЗИКА

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

КРИСТАЛЛОФИЗИКА

КРИСТАЛЛОФИЗИКА - область кристаллографии, изучающая связь физ. свойств кристаллов и др. анизотропных материалов (жидких кристаллов, поликристаллич. агрегатов) с их симметрией, атомной и реальной структурой и условиями получения, а также изменения свойств под влиянием внеш. воздействий. К. использует симметрию кристаллов как метод изучения закономерностей изменения свойств объектов, общие закономерности, установленные физикой твёрдого тела и связывающие атомное строение и электронную структуру со свойствами кристаллов.

При изучении мн. макроскопич. свойств кристаллических и др. материалов их можно рассматривать как сплошные однородные среды, характеризуемые своей точечной или предельной группой симметрии. В то же время мн. свойства кристаллов определяются их кристаллич. структурой (напр., оптич. спектры) или даже симметрией локального окружения исследуемого фрагмента структуры (данные радиоспектроскопических методов).

Для количественного описания анизотропных физ. свойств кристаллов в К. используется аппарат тензорного и матричного исчислений. Различают два типа тензоров - материальные и полевые. Полевые тензоры характеризуют поля внеш. воздействий (темп-ры, электрич. поля, механич. напряжений и т. д.) и не связаны с симметрией исследуемой среды. С помощью материальных тензоров описывают свойства анизотропной среды.

Симметрия макроскопич. свойств кристалла определяется точечной группой его симметрии (G) и не может быть ниже последней (Неймана принцип). Иными словами, группа собств. симметрии G* материального тензора, описывающего то или иное физ. свойство такой среды (кристалла), включает элементы симметрии G, т. е. является надгруппой Физическая энциклопедия. В 5-ти томах КРИСТАЛЛОФИЗИКА . Собств. симметрия тензоров часто описывается предельными группами точечной симметрии. Нек-рые величины, характеризующие свойства кристаллов (плотность, теплоёмкость), являются скалярными. Взаимосвязь между двумя векторными полями (напр., между поляризацией Р и напряжённостью электрич. поля М, плотностью тока j и E )или псевдовекторными величинами (напр., между магн. индукцией В и напряжённостью магн. поля Н )описывается тензором 2-го ранга (тензоры диэлектрической восприимчивости, электропроводности, магнитной восприимчивости), в общем случае линейные и нелинейные связи между тензорными полями - материальными тензорами 3-го, 4-го, 5-го и др. высших рангов (см. Пьезоэлектричество, Электрострикция, Магнитострикция, Упругость, Фотоупругость). Для полной характеристики свойств анизотропной среды необходимо определить независимо все компоненты тензоров соответствующих рангов, а часто и зависимости каждой из компонент от внеш. факторов. К. разрабатывает рациональные способы таких измерений, к-рые, как правило, усложняются по мере понижения симметрии кристаллов (повышения числа независимых компонент тензоров соответствующего ранга). Так, в К. широко используется геом. представление об анизотропии физ. свойств (материальных тензоров) в виде т. н. указат. поверхностей (рис. 1); радиус-вектор такой поверхности характеризует величину рассматриваемого свойства в данном направлении. Симметрия анизотропной среды определяет не только симметрию и число независимых компонент тензоров, описывающих то или иное физ. свойство, но и ориентацию гл. осей указат. поверхностей. Число отличных от нуля компонент тензора для среды с симметрией G определяется методами теории представлений групп.

Физическая энциклопедия. В 5-ти томах КРИСТАЛЛОФИЗИКА

Рис. 1. Сечение указательной поверхности вращения для угла поворота плоскости поляризации света (с длиной волны Физическая энциклопедия. В 5-ти томах КРИСТАЛЛОФИЗИКА=589,3 нм) в кристалле правого a-кварца, класс симметрии 32. Знак плюс означает правое вращение вдоль главной оси х3.

В К. исследуются как эффекты, характерные только для анизотропных сред (двойное лучепреломление и вращение плоскости поляризации эл.-магн. и акустич. воля, прямой и обратный пьезоэффекты н др.), так и явления, наблюдаемые и в изотропных средах (электропроводность, упругость и т. д.); в кристаллах эти явления приобретают особенности, обусловленные их анизотропией. Так, напр., в наиб. симметричном кубич. кристалле в плоскости (001) распространяются не две, как в изотропной среде, а три акустич. волны (рис. 2, а )и скорости двух сдвиговых волн совпадают, когда упругие волны распространяются вдоль осей 4-го порядка. Для того же кристалла в направлении пространственной диагонали [111] (рис. 2, б )имеет место явление внутр. конич. рефракции упругих волн.

Физическая энциклопедия. В 5-ти томах КРИСТАЛЛОФИЗИКА

Рис. 2. Главные сечения указательной поверхности фазовых скоростей (в 105 см/с) упругих волн в кубическом кристалле КВг, класс симметрии m3m: а - в плоскости (100); б - в плоскости (110).

Задачей К. является также исследование свойств кристалла при фазовых переходах. Кюри принцип позволяет предсказать изменение точечной и пространственной групп симметрии кристаллов при фазовых переходах (напр., в ферромагн. и сегнетоэлектрич. состояния; см. Ферромагнетизм, Сегнетоэлектрики). При описании магнитных свойств кристаллов и кристаллов с модулированными структурами (см. Волны зарядовой плотности )в К. привлекается аппарат обобщённых групп симметрии.

В К. изучается и влияние реальной: структуры на физ. свойства кристаллов. К дефектам структуры чувствительны мн. свойства кристаллов: электропроводность, механич., оптич. и др. свойства. Важнейшие задачи К.- установление зависимостей изменения физ. свойств кристаллов от их состава, строения и реальной структуры, а также поиск способов управления свойствами материалов и создание новых структур (текстур и композитных материалов) с оптим. сочетанием ряда свойств для практич. применения.

Лит.: Най Дж., Физические свойства кристаллов и их описание при помощи тензоров и матриц, пор. с англ., 2 изд., М., 1967; Сиротин Ю. И., Шаскольская М. П., Основы кристаллофизики, 2 изд., М., 1979; Современная кристаллография, т. 4, М., 1981; см. также лит. к ст. Кристаллография, Симметрия кристаллов. К. С. Александров.

В начало энциклопедии