Приглашаем посетить сайт

Некрасов (nekrasov-lit.ru)

Физическая энциклопедия. В 5-ти томах
ИСКРОВАЯ КАМЕРА

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ИСКРОВАЯ КАМЕРА

ИСКРОВАЯ КАМЕРА - управляемый трековый детектор частиц, действие к-рого основано на возникновении искрового разряда в газе в месте прохождения заряж. частицы. Применяется в ядерной физике (исследование ядерных реакций), физике элементарных частиц (эксперименты на ускорителях), астрофизике (космич. лучи) и медицине. И. к. содержит разрядный промежуток, заполненный газом. Телескоп счётчиков (напр., сцинтилляционных, черенковских) вне И. к. регистрирует факт прохождения частицы через объём камеры и управляет (с помощью электронных устройств) подачей на электроды камеры высоковольтного короткого импульса (10-100 нс) напряжения. Электроны, возникающие в газе камеры на пути заряж. частицы врезультате ионизации атомов газа, в электрич. поле И. к. ускоряются при движении к аноду. Набрав достаточную энергию и сталкиваясь с атомами газа, они возбуждают и ионизуют атомы, освобождая новые электроны. Процесс газового усиления приводит к образованию электронно-фотонных лавин. Когда в головке лавины создаётся концентрация ~108 электронов, образуется стример- сгусток плазмы, распространяющийся вдоль электрич. поля в обоих направлениях. В результате вдоль трека частицы возникает цепочка искровых разрядов (либо локально светящиеся области газа). Цепочка искр воспроизводит траекторию частицы. История И. к. начинается с 1949, когда Дж. У. Койффел (J. W. Keuffel) впервые наблюдал искровой разряд между параллельными пластинами, вызванный прохождением частицы. В 1957 Т. Краншоу (Т. Е. Cranshow) и И. де Бир (I. F. de Beer) применили подачу высоковольтного напряжения на И. к. в форме импульса тотчас после прохождения частицы. Применение И. к. в физике элементарных частиц высоких энергий началось после работы С. Фукуи (S. Fukui) и С. Миямото (S. Miyamoto) (1959), к-рые использовали для наполнения И. к. инертные газы Не, Ne, Аr. Их отличит, характеристика - отсутствие у атомов электронного сродства. В результате этого время образования искры сильно укорачивается, уменьшаются врем, флуктуации, что приводит к существенному улучшению эффективности (вероятности регистрации частицы) И. к. Обычно применяются Ne или Ne+He (70/30), к-рые медленно продуваются через объём И. к. <Электроды И. к. обычно плоские (площадь пластин от десятков см 2 до неск. м 2), но могут использоваться камеры со сферич. и цилиндрич. геометрией. Большое распространение получили т. н. проволочные И. к., электроды к-рых состоят из множества параллельных проволочек. В экспериментах на ускорителях применяются И. к. с площадью электродов в неск. м 2, состоящих из тысяч проволочек, натянутых на расстоянии неск. мм друг от друга. Электрич. сигналы, возникающие на проволочных электродах, используются для получения (съёма) информации о координате частицы. <В узкозазорных И. к. (ширина зазора 1-2 см) искра появляется в месте прохождения заряж. частицы, но следует по направлению внеш. электрич. поля, т. е. перпендикулярно электродам. В эксперименте одновременно применяют много И. к. (стопка) и траектории частиц прослеживаются по картине искр в этих камерах. <В широкозазорных И. к. (ширина зазора 10 см) искра следует вдоль траектории (трека) частицы: соседние лавины, образующиеся вдоль ионизованного следа (трека), сливаются вместе и образуют плазм, канал, по к-рому протекает искровой ток. Широкозазорные И. к. регистрируют частицу в виде светящегося трека, следующего в пространстве по направлению траектории заряж. частицы, в т. ч. и при наличии магн. поля, до тех пор, пока угол между направлениями электрич. поля Е и траекторией частицы v[45-50°.

Физическая энциклопедия. В 5-ти томах ИСКРОВАЯ КАМЕРА

При больших углах наступает т. н. проекционный режим, когда вместо одного трека образуется много слабосветящихся искр вдоль направления поля (перпендикулярно электродам). Широкозазорные И. к. регистри руют десятки одноврем. треков в камере с эффективностью ~100%. Угл. точность следования искры вдольтраектории частиц ~1 мрад. Для регистрации треков при v>50° (вплоть до 90°, см. рис.) используют стримерный режим, при к-ром развитие стримера начинается с каждого первичного электрона и обрывается на длине неск. мм (см. Стримерная камера). Высоковольтное напряжение подаётся на И. к. с помощью триггерного устройства, срабатывающего по сигналу телескопа счётчиков. Основой высоковольтного контура для узкозазорных камер является ёмкость с накопленной энергией, передаваемой заданный момент на И. к. В Ne рабочее напряжениь ~10 кВ. Для питания широкозазорных камер используются многоступенчатые импульсные генераторы типа Аркадьева-Маркса, т. к. на камеру с зазором 20-30 см используется напряжение ~200 - 300 кВ. Импульс необходимо подавать как можно быстрее после момента прохождения частицы, чтобы электроны ионизации, созданные вдоль трека в камере, не прилипли к эл.-отрицат. атомам и не отошли за счёт диффузии далеко от трека. Обычно задержка ~100 нс, длительность импульса десятки нс. Для очистки объёма узкозазорных И. к. от зарядов, созданных предыдущими частицами, на камеру подаётся пост, напряжение (200 В), при этом достигается "время памяти" t~1 мкс. В широкозазорных И. к. такое малое tдостигается с помощью малых добавок эл.-отрицат. газов. <Существует неск. способов съёма информации с И. к. Фотографич. метод. Использовался при исследовании космич. лучей и в ранних экспериментах на ускорителях. Неудобства метода - в его медленности (ограниченной механич. свойствами фотоаппарата) и отсутствии быстрой информации в "реальном времени". Акустич. метод. Локализация искры определяется интервалом времени между образованием искры и приходом звуковых сигналов к микрофонам, расположенным в разл. частях камеры. Недостаток - сложность регистрации неск. одноврем. событий. В идиконный метод. Состоит в регистрации оптич. сигнала от И. к. При этом производится "оцифровывание" адресов искры с помощью видикона. Недостаток - низкая чувствительность видиконов (ниже, чем у фотоплёнки). Все 3 метода используются в магн. поле. <Для проволочных И. к. используются след, способы съёма информации. Метод ферритовых колец, к-рые нанизываются на каждую нить И. к. При прохождении импульса тока через нить её кольцо меняет одно намагнич. состояние на другое. Через кольца продеты считывающие проволоки, связанные с ЭВМ. Ограничений по числу одновременно регистрируемых искр нет. Один искровой промежуток в проволочной И. к. даёт лишь одну координату. Для регистрации второй координаты применяется второй промежуток, но перевёрнутый на 90°. Магнитострикц. метод. Электроды И. к. изготавливаются из ферромагн. проволок, изменяющих размеры при намагничивании (Ni и др.). На конец каждой проволочки надето считывающее кольцо. Искра производит локальную деформацию, распространяющуюся вдоль нити. Время задержки между прохождением искры и регистрацией кольцом сигнала от неё даёт координату. Метод распределения тока. На противоположных концах каждой нити измеряется токовый сигнал от одной и той же искры. Если нить однородна, сигналы делятся в отношении сопротивлений соответствующих участков нити. Отношение сигналов определяет координату искры. Осн. преимущество этого метода - быстрое считывание (через 200 нс после события).Основные характеристики И. к.: координатная точность 0,3-1 мм; время памяти 0,5-1 мкс; частота срабатывания 10-100 Гц; И. к. регистрирует многочастичные события (до сотен частиц).И. к. просты в изготовлении и эксплуатации даже при очень больших размерах. Они удачно сочетают свойства таких трековых детекторов, как пузырьковая камера (точная локализация траекторий заряж. частиц, высокое пространств, разрешение), и таких электронных детекторов, как сцинтилляционные детекторы (высокое быстродействие и временное разрешение). И. к. широко применялись в 1960-75, однако в дальнейшем наибольшее применение получила стримерная камора. <Лит.: Искровая камера, М., 1967; Rice-Evans P., Spark, streamer, proportional and drift chambers, L., 1974.Б. А. Долгошеик.

В начало энциклопедии